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Results on a generalized magnetically controlled ballistic deposition model of granular piles are reported in
order to search for the effect of “spin flip” probabilityq in building a granular pile. Two different regimes of
spin cluster site distributions have been identified, a borderlineqcsbJd where J is the interaction potential
strength.
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I. INTRODUCTION

The physics of granular matter has drawn a great deal of
information from percolation theory ideas[1]. Relatively
simple models based on analogies have been implemented in
order to describe realistic granular pile(static and dynamic)
properties[2–7]. Segregation[8], decompaction[9], and ava-
lanches[10] point out to the existence of clusters. However,
in describing such materials it is crucial to consider that they
are not made of symmetrical entities. It is necessary to intro-
duce at least one degree of freedom for the grain with some
coupling to an external field. One can imagine that the de-
gree of freedom, is called a “spin,” coupled to a “magnetic
field,” though the spin can represent any nonmagnetic physi-
cal feature of practical interest, like the grain roughness or
shape feature. The spin role is to break the spatial isotropic
symmetry. The direction of such a spin can represent the
position of a grain with respect to neighboring entities, as
well as a rotation process. The grain-grain interaction can be
imagined to be some(elasticlike) potential containing infor-
mation on the grain Young, rigidity, bulk modulus, and Pois-
son ratio, . . . and geometric aspects[11]. Generalizations to
more complex spin models are immediately imagined.

Coniglio and Herrmann presented in Ref.[12] a related
view of the granular packing problem and adapted the Ising
model and Sherrington-Kirkpatrick spin glass model to
granular phenomena obtaining two phase transitions in the
system. The short range exchange energyJ describing a
“spin-spin interaction” is analogous in granular matter to the
contact energy between grains. An interpretation ofJ for
flows can be found in Pandeyet al. [13]. A constrained Ising
spin chain has also been recently considered and studied as a
toy model for granular compaction[14].

Something which is fully appreciated is the difference in
constructing piles in presence or not of vertical walls. A py-
ramidal pile has not necessarily the same structure, arches,
. . . as a pile in a silo. Moreover, it is quite unrealistic to build
a pile from a single grain faucet. Finally, due to its aniso-
tropic shape a grain can rotate during its fall, e.g., in re-
sponding to the local wind, or difference in pressure between
the upper and lower grain surfaces. Such remarks have mo-
tivated us into reexamining a magnetic Tetris-like model(or
a magnetic rain) for which the grain is characterized by a
spin which can flip during its fall under some energetic con-
dition.

In this paper the role of changing the depositing spin flip-
ping probability during its fall in such a MBD(magnetic
ballistic depositon) model is shown to influence the pile den-
sity, the pile “magnetization,” and the cluster size distribu-
tion. In Sec. II, we establish the algorithm rules and briefly
comment upon them. In Sec. III we present numerical results
for the density and the magnetization of the pile(Secs. IV
and V). A critical percolation line is found separating two
regimes for the size(mass) distribution of clusters. Finally, in
Sec. VI, a brief conclusion can be found.

II. EXPERIMENTAL PROCEDURE

The algorithm for the so calledq-MBD model, in contrast
to the 1

2-MBD model [15], goes as follows:
(1) First, we choose a horizontal substrate of spins with a

predetermined(for example, antiferromagneticlike or ran-
dom) configuration; periodic boundary conditions are used.

(2&3x0029; A falling(up or down) spin is dropped along
one of the lattice columns from a heightrmax+5a, wherermax
is the largest distance between an occupied cluster site and
the substrate.

(3) At each step down the spin can flip, i.e., change its
“sign;” the “up” direction has a probabilityq.

(4) The spin goes down flipping until it reaches a site
perimeter of the cluster at which time the local gain in the
Ising energy

FIG. 1. The dependence of the density onq andbJ.
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is calculated. The fall velocity is irrelevant and there is no
backscattering. If the gain is negative the spin sticks to the
cluster immediatelyssticking probability =1.0d and one goes
back to steps2d. In the opposite case the spin sticks to the
cluster with a rate exps−DbEd whereDbE is the local gain
in the Ising energy. If the spin does not stick to the cluster
it continues going down. Of course, if the site just below
the spin is occupied, the spin immediately stops and sticks
to the cluster.

(5) After the spin stops one goes back to step(2).
In the 1

2-MBD model [15] a finite fieldH andq=0.5 were
assumed; in the present report we takeH=0 but enlarge the
permissible values ofq to f0,1g.

III. NUMERICAL RESULTS

All results reported below are for a triangular lattice of
horizontal sizeL=100, when the pile made of clusters has
reached a 100 lattice unit height, and after averaging over
1000 simulations. The substrate consists of spins with ran-
dom direction.

A. Density

We define the density of a cluster asr=number of spins in
the cluster/number of sites on the lattice in which obviously
the number of lattice sites in the denominator =10 000.

Figure 1 illustrates the behavior of the density with re-
spect to theq and bJ parameters. This figure convinces us
that the results are symmetrical with respect toq=0.5. In the
1
2-MBD model the density varies between 0.38 and 0.47 but
in the presentq-MBD a spread in density occurs—from al-
most a completely compact pile in the antiferromagnetic
(AF) case and largeq to a loosely packed pile in the F case.
The lowest densitys0.38d occurs forbJ=0 and for border
values ofq, i.e., 0 and 1, in the F case. For strong enough
positive interactionssbJ.4d the density saturates toward the

value r<0.47, in the F case. In the AF case, the density
varies between 0.38 and 1.0.

B. Magnetization

The dependence of the magnetization defined as

M =
n+ − n−

n+ + n−
s2d

is shown in Fig. 2 as a function ofbJ andq, wheren+ andn−
are the number of up and down spins, respectively, i.e.,n+
=10 000r+. M can be considered as a measure of the dif-
ference in grain orientations in the final packing.

The magnetization appears to be the same in the regions
sbJ.0,q,0.5d and sbJ,0,q.0.5d (see Fig. 2). Notice
that there is no terrace observed here in contrast to the
1
2-MBD model case[15].

IV. PERCOLATION

Define an up-spin percolating cluster as a cluster of up-
spins which extents from the bottom to the top of the sample.

FIG. 2. Dependence of the magnetization onq for severalbJ
values: F case(dotted lines), AF case(dashed lines).

FIG. 3. Dependence of the percolation probabilitypc on as a
function of q for different bJ values.

FIG. 4. Dependence ofq0 on bJ.
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At fixed q andbJ the fractionp of piles consisting in such a
percolating cluster of up-spins was computed. The behavior
of p with respect toq for several values of thebJ parameter
is shown in Fig. 3. There is no percolating cluster for
q,0.75 in the F case and 0.85 in the AF case. Theq0
[q0sbJd : =q when p.0] dependence is shown in Fig. 4.
Above q0 when p becomes finite a very fast growth ofp is
observed, at a givenqc.

The differences between AF and F are understood if one
recalls that the density in the AF case is much more sensitive
to a change inq than in the F case, for which a change ofq
induces only a very small variation of the density—recall
that the density in this case isf0.38;0.47g. On the other hand,
a similar variation inq values generates piles with a wide
interval of densities in the AF case.

V. THE SIZE (MASS) DISTRIBUTION OF CLUSTERS

The number of clusters withs size is calledNs. Its behav-
ior is shown in Fig. 5 for lowq values. Notice that theNs
dependence is approximately a straight line on a semilog plot
(all logs are Neperian), i.e.,

Nsssd ~ e−kEs for q < 0, s3d

wherekE is a constant for a fixedsbJ,qd pair ands is the
cluster sizesmassd. Observe that the existence of a large

cluster is more probable in the F case than in the AF case.
This is expected when one recalls that the F case favors
neighbors with a similar spin direction during the deposition.

For highq values theNs dependence stops to be an expo-
nential law and becomes a power law(see log-log plots on
Fig. 6). Let us postulate

Nsssd ~ s−kP for q < 1. s4d

In order to find the values ofq for which the crossover
effect occurs, i.e., from an exponential law regime to a power
law regime, we have estimated the slopes of theNs depen-
dencies in both regimes. It seems that one should distinguish
pile growth conditions with respect toqsbJd,qc and
qsbJd.qc.

Analogous toNs we can defineNh as the number of hole
clusters. Unlike the spin clusters there is no difference inNh
dependencies between low and high values ofq—all Nh de-
pendencies seem to follow a power law.

VI. CONCLUSIONS

We have presented the extension of the MBD model[15]
in order to find the role of the probability of spin flip during
deposition(or the degree of freedom modification) in granu-
lar downward rainlike flow in two dimensions. The general-

FIG. 5. Examples of theNsssd dependence for low values ofq on semilog plots:(a) bJ=5; (b) bJ=−5.

FIG. 6. Examples of theNsssd dependence for high values of the q parameter presented on log-log plots;(a) states for ferromagneticlike
case, i.e.,bJ=5; (b) states for antiferromagneticlike case, i.e.,bJ=−5.
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ized model, hereby calledq-MBD, is a nonequilibrium bal-
listic deposition model with one degree of freedom. One can
imagine that the spins(grains) have different shapes andq
can be related to a wind strength such that the grains favor
one or another position in order to minimize the pile energy.
We have examined the cluster properties through two order
parameters, since two characteristic fields(J and q) are in-
trinsic to the model.

We have investigated the size, or “mass,” of the spin clus-
ters created through simulation of the nonequilibrium depo-
sition. The “quenching” of the degree of freedom on the
cluster leads to two different regions of spin cluster geomet-
ric properties. In the low “field”q region the spin cluster
mass distribution follows an exponential law, while in the

high q region the distribution is characterized by a power
law. The transition between these two regimes is not sharp.
The exponential law regime for high strength of interactions
(i.e., ubJu.4) seems to be universal, i.e., independent on the
magnitude of the intrinsic parameters but depends only on
the sign of bJ, i.e., the characteristic contact interaction
potential,—if they are ferromagneticlike or antiferromagneti-
clike, mechanically repulsive, or attractive.
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